Low loss, high-speed single-mode half-disk resonator

Xinbai Li, Qingzhong Deng, and Zhiping Zhou*
State Key Laboratory of Advanced Optical Communication Systems and Networks,
School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
*Corresponding author: zjzhou@pku.edu.cn

Received February 24, 2014; accepted May 11, 2014; posted May 22, 2014 (Doc. ID 207018); published June 20, 2014

This work proposes a new type of resonator: a single-mode half-disk resonator. Half of the resonator is solid, allowing large electrical or mechanical contacts, and a single-mode operation can be retained. A systematic design method is demonstrated and analyzed. For a 3 μm radius, the simulation predicts an internal Q-factor as high as 2.4 × 10^9, and a loaded Q-factor of ~9000 is measured in experiments, comparable even with uncontacted microrings of bigger radii. The large contacts will improve the performance of a wide range of active devices. We present the contact resistance of a vertical PN junction modulator based on this structure, which can be reduced to nearly an order of magnitude, enabling a much faster modulation speed. © 2014 Optical Society of America

OCIS codes: (130.0130) Integrated optics; (130.3120) Integrated optics devices.

http://dx.doi.org/10.1364/OL.39.003810

The requirements of future computation and communication systems have put a stringent energy budget on silicon photonics interconnect circuits. For modulators, the energy consumption should be lower than 10 fJ/bit in high-speed modulation [1,2]. Vertical PN junction modulators have the highest modulation efficiency among all junction types, about 1/16 the energy consumption of a lateral PN junction, and vertical design keeps a record of the lowest energy consumption of only 3 fJ/bit [3]. However, a major problem for vertical PN junction lies in designing electrical contacts, because any contact on a ring waveguide will cause substantial scattering loss. Recently, adiabatic microring resonator (AMR) has been proposed to solve this problem [4,5], achieving interior electrical contacts without causing considerable leak of the optical field as in the case of microring. However, contacts are limited to a small area in the AMR. For modulators, this leads to a large contact resistance and RC-limited bandwidth, especially in small radius rings where photon lifetime plays a less significant role. Besides modulators, resonators capable of low-loss large contacts can find extensive applications in optical interconnection and communication [6–8]. Filters, switches, and multiplexers with active tuning/controlling will benefit from higher efficiency, speed, and Q-factor.

In the field of microdisks, multiple geometrical modifications have been reported in an attempt to achieve single-mode or mode reduction, e.g., gear-shaped [9], hole-piercing [10]. Nevertheless, single-mode is still out of reach with a completely solid disk. The idea of this Letter stems from the low-loss feature of microdisks, that is, to loosen the confinement of the whispering gallery mode (WGM) as much as possible.

In this work, we propose a class of single-mode half-disk resonators (HDRs) that maintain a high Q-factor even when half of the resonator is available for contacts. It is aimed to expand the available area of electrical or mechanical contacts, reducing loss, and facilitating a much higher speed. A systematic and generalized design method is demonstrated. Simulations and experiments are performed to verify this method.

The HDR has the advantage of the WGM, which can propagate without confinement from inner boundary, making it possible to travel through the contact area without leakage. Figure 1(a) illustrates the structure of the proposed device. The gray and white areas stand for silicon and SiO2, respectively. The vertical dotted line represents the axis of symmetry. The ring waveguide is narrow at the coupling region (bottom) to ensure single-mode coupling, and gradually widens, loosening the confinement of the WGM. Apparently, a widening too abrupt will cause greater transitional loss or multimode. The contact area is where electrical or mechanical contacts can be made.

In order to design a smooth transition curve to reduce transitional loss, the minimum variation curve is modified, which is an interpolation curve that minimizes the L2-norm of curvature variation [11]. At the endpoint of the total arc length s1, the transition curve satisfies G2 continuity to form smooth joints:

\[
\kappa_1(s_1) = \kappa_2(s_1), \quad \theta_1(s_1) = \theta_2(s_1), \quad \frac{d\kappa_1}{ds}(s_1) = \frac{d\kappa_2}{ds}(s_1) = 0, \quad (1)
\]

where \(\kappa(s)\) and \(\theta(s)\) represent the curvature and tangent angles of the curve, and \(s_1\) stands for the total length of

Fig. 1. (a) Schematic of a single-mode HDR. Light inputs from the bus waveguide and evanescently couples to the HDR coupling region at the bottom. The gray and white areas represent silicon and SiO2, respectively. (b) Demonstration of 90° transition curve design, \(R_{11} = 1.3 \, \mu m, R_2 = 2 \, \mu m\), showing a smooth joint between contact area and transition area.
the curve. For clarity, we establish a Cartesian coordinate with origin at the center of the cavity, as shown in Fig. 1(b). Consider that the transition curve starts at point \((R_{10}, 0)\) and ends at point \((R_{11} \cos \alpha, R_{11} \sin \alpha)\). The curvature \(\kappa\) can be well approximated by the third-order polynomial \([11, 12]\):

\[
\begin{align*}
\kappa(s) &= \frac{1}{R_{10}} + a_1 s + a_2 s^2 + a_3 s^3, \\
\theta(s) &= \frac{\pi}{2} + \frac{1}{R_{10}} s + \frac{a_1}{2} s^2 + \frac{a_2}{3} s^3 + \frac{a_3}{4} s^4.
\end{align*}
\tag{2}
\]

The transformation from arc length \(s\) to a Cartesian coordinate \(x, y\) can be realized by an iterative method:

\[
\begin{align*}
x_i &= x_{i-1} + \cos[\theta((i-1)ds)]ds, \\
y_i &= y_{i-1} + \sin[\theta((i-1)ds)]ds.
\end{align*}
\tag{3}
\]

Curve parameters \(a_1, a_2, a_3, s_1\) are solutions of the above Eq. (1-2). Combining Eq. (1) and Eq. (2) yields the following boundary conditions:

\[
\begin{align*}
\theta(s_1) &= \frac{\pi}{2} + \alpha, \\
\frac{dx}{ds}(s_1) &= 0, \\
x_n &= R_{11} \cos \alpha, \\
y_n &= R_{11} \sin \alpha.
\end{align*}
\tag{4}
\]

where \(\alpha\) stands for the central angle of the transition curve, fixed at 90° in our design.

To summarize the design procedures, first the parameter \(R_{10} = R_2 - W\) \((R_2,\) outer radius, \(W,\) waveguide width at coupling region) is determined according to the acceptable coupling gap. For example, \(R_2 = 3 \mu m\) rings usually have \(W \leq 400 \text{ nm}\) for a coupling gap wider than 200 nm. Next, solve Eq. (4) of a different preset, \(R_{11}\), and obtain the curves in a Cartesian coordinate using Eq. (3). Finally, optimize single parameter \(R_{11}\) to achieve the best performance. This generalized method has proven to be valid on arbitrary parameter combinations.

The design of the \(R_2 = 2 \mu m\) transition curve is demonstrated, in which half of the HDR is available for contacts, with an inner radius of \(R_{11} = 1.3 \mu m, R_{10} = 1.5 \mu m\). Results are shown in Fig. 1(b), with the blue line (right being the transition curve, and the red line (left) being the circular arc of contact area connecting with it. From the figure, the G2 continuity conditions ensure a smooth joint at \(x = 0\) and prevent mode conversion at endpoints. Here we note that, although the circular boundary of contact area does not exist in the real device [Fig. 2(a)], the continuity conditions ensure smoothness even when the contact area is doped or filled with other materials. In addition, the proposed design method is based on equation-solving and hence can be very robust and time-efficient, facilitating \(R_{11}\) optimization.

2D simulations are performed to prove the design concept, determine internal \(Q\)-factor, and optimize the parameter \(R_{11}\). A 220-nm thick silicon HDR surrounded by an \(SiO_2\) is analyzed at a 1550 nm wavelength. Figure 2(a) depicts the field distribution in the HDR. It is clearly seen that no leaky modes or higher order modes are generated; thus single-mode operation can be achieved by this device. Although the WGM has a larger mode volume than the strongly confined guided mode at the coupling region, there is no field distribution in the contact area. Therefore, electrical contacts fabricated in the center do not interact with the light field, and thereby induce no extra loss, whether highly doped or covered with metal electrode. Figure 2(b) shows the optimization of the parameter \(R_{11}\); here \(R_{10} = 1.6 \mu m\) is considered to allow a wider coupling gap. The optimal value is around \(R_{11} = 1.35 \mu m\), achieving an internal \(Q\)-factor as high as \(1 \times 10^5\). For the \(R_2 = 3 \mu m\) case, an internal \(Q\)-factor has a similar relationship with \(R_{11}\), but peaks at \(R_{11} = 2.2 \mu m\) with an internal \(Q\)-factor of \(2.4 \times 10^6\).

The internal \(Q\)-factor is a figure of merit that directly reflects the loss feature of the resonator. The simulated internal \(Q\)-factor is higher than the AMR (88,000, 2D simulation, [4]) while our device allows a much larger contact area. It is enlightening that a lower loss is not realized by tightly shaping and confining the WGM, but by loosening its confinement as much as possible outside the coupling region. Additionally, for a fabrication error of \(\pm 20 \text{ nm}\) around optimal \(R_{11}\), the internal \(Q\)-factor
shows less than a 10% variation, indicating good tolerance.

The HDR in this work is fabricated on a 220-nm-thick silicon-on-insulator (SOI) platform with a 2-μm buried oxide layer. The E-beam is used to define the pattern. After inductively coupled plasma (ICP) etching, a 1-μm thick plasma-enhanced chemical vapor deposition (PECVD) silicon oxide is deposited on top. The HDR has an outer radius of \(R_2 = 3 \, \mu m \) and an inner radius of \(R_{11} = 2.2 \, \mu m \). In the coupling region, both the bus waveguide and the ring waveguide have a width of 400 nm, and the coupling gap is 240 nm (critical coupling). A scanning electron microscope (SEM) image of the fabricated device is shown in Fig. 3. The etching selectivity is not as good as we expected, resulting in a straight waveguide and a ring waveguide width of \(~370 \, nm\) in coupling region.

This increases the cavity loss and makes the HDR slightly over-coupled. The measured \(R_{11} \) has a +35 nm deviation from an optimal value of 2.2 \(\mu m \), and although a single-mode operation will be retained, it compresses the WGM mode volume and thus reduces the Q-factor. Figure 3(b) shows the magnified view of the transition area, marked in Fig. 3(a). Small corrugations can be seen on the waveguide transition area, possibly caused by nonuniformity of the etching process. The following measurements, though, indicate our device can tolerate small unsmooth corrugations without major degradation of performance.

For the characterization of the fabricated HDR, a tunable laser is used as the light source in our measurement system and butt-coupled to the chip with a tapered fiber. The optical transmission spectrum is measured as shown in Fig. 4, achieving a 36 nm uncorrected free spectral range (FSR) and loaded Q-factor of \(~9000\). Generally, a loaded Q-factor is directly measurable in experiment and is substantially lower than the internal Q-factor because of the coupling loss, coupling conditions, etc. Some published results are listed here for references: the internal Q-factor of the 5 \(\mu m \) radius conventional microring resonator far exceeds \(10^6 \), but a loaded Q-factor of fabricated is usually around 10,000–20,000 (doped, [13], undoped [14]). For small rings, the 1.5 \(\mu m \) radius possesses an internal and loaded Q-factor of 46,000 and 3000, respectively [15]. It is clear that the proposed device has an outstanding low-loss feature, even comparable with uncontacted microrings of bigger radii. The clean optical spectrum free of multi-mode resonances indicates a single-mode operation, in accordance with the simulation results in Fig. 2(a), verifying the competence of the proposed method.

In order to compare the simulation and experiment results, a 3D-FEM simulation of the HDR transmission under the exact structural parameters measured in SEM photographs is provided in the Fig. 4 inset. The resonant wavelength of the intrinsic HDR is simulated to be 1512 nm (blue curve on the right), with a loaded Q-factor of 10,132. The resonant wavelength is in accurate accordance with the experiment results, and the Q-factor is only slightly higher because surface roughness is not included in simulation. This consistency allows further accurate analysis of the doping impact. The red curve on the left illustrates full doping of the HDR at \(1 \times 10^{15} / \text{cm}^3 \) at the same coupling gap. The loaded Q-factor is measured to be 6090 as a result of free carrier absorption.

The main purpose of this work is to propose a low-loss single-mode HDR that allows larger contacts. To better present its capabilities, a schematic of a vertical junction modulator based on the HDR is supplemented as shown in Fig. 5. Enabled by the HDR’s features, the presented electrical contact design is the widest direct contact of the single-mode modulator. The doping concentration for P and N type is \(1 \times 10^{15} / \text{cm}^3 \), a trade-off between modulation efficiency and absorption loss. T 60 nm-thick intrinsic silicon between P+ and N+ layers can avoid forming a P+/N+ junction. The validity of the same doping concentration vertical PN junction modulators has been reported in several studies [3,5]. Since the innovation of Fig. 5 is in a contact area, only characteristics relevant to modulation speed are analyzed below. P/N doping will induce additional \(\sim 3 \, \text{dB/mm} \) loss, and the corresponding intrinsic Q-factor will be reduced to around 20,000, deduced from the loss-Q relations [15].
the loaded device. With a loaded ratio of 60/80 nm is not a strict requirement. The intrinsic region is simply to isolate P+ from N+. Because of the large contact area, 30 nm thickness variations of the layers will not substantially impair the electrical performance.

This work proposed a new type of resonator named a single-mode half-disk resonator, with numerical and experimental results demonstrated. Its low loss feature is characterized by an internal Q-factor of 10^5 and a loaded Q-factor of ~9000 with half of the resonator to form electrical or mechanical contacts. A 36-nm uncorrupted FSR is measured in the experiment, confirming a single-mode operation. The simulation results are proven to match well with the experimental measurements. A vertical PN junction modulator with much smaller resistance is thus enabled by the proposed device, achieving only ~50 Ω, an order of magnitude lower than previous works. The proposed HDR is a promising candidate in optical interconnection and communication.

This work is partially supported by the Major International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (No. 61120106012).

References

11. R. L. Leven and C. Adviser-Sequin, From Spiral to Spline: Optimal Techniques in Interactive Curve Design (University of California, 2009).