Fabrication of silicon microring resonator with smooth sidewalls

Yao Chen
Guangxi University
College of Physical Science and Technology
Nanning, Guangxi, 530005, China

and
Huazhong University of Science and Technology
Department of Electronic Science & Technology
Wuhan, Hubei, 430074, China

Junbo Feng
Peking University
State Key Laboratory on Advanced Optical Communication Systems and Networks
Beijing, 100871, China

Zhiping Zhou
Peking University
State Key Laboratory on Advanced Optical Communication Systems and Networks
Beijing, 100871, China

and
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, Georgia 30332-0250
E-mail: zjzhou@pku.edu.cn

Jun Yu
Huazhong University of Science and Technology
Department of Electronic Science & Technology
Wuhan, Hubei, 430074, China

Christopher J. Summers
Georgia Institute of Technology
School of Materials Science and Engineering
Atlanta, Georgia 30332-0250

David S. Citrin
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, Georgia 30332-0250

and
2958 Georgia Tech-CNRS
Unité Mixte Internationale
Georgia Tech Lorraine
2 rue Marconi
57070 Metz, France

Abstract. Fabrication of silicon microring resonators was optimized by using electron-beam lithography (EBL) and inductively coupled plasma (ICP) etching with different mask materials. Sidewall roughness of less than 10 nm was revealed by high-resolution scanning electron microscopy (SEM) without any post-etch process. The fabrication processes are described in detail, and comparisons are made in consideration of process complexity, process latitude, and sidewall roughness. © 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3258487]

Subject terms: microring resonator; fabrication; waveguide; roughness.

Paper 08156RR received Oct. 8, 2008; revised manuscript received Sep. 9, 2009; accepted for publication Sep. 18, 2009; published online Nov. 13, 2009.

1 Introduction

Microring resonators have become a key building block for photonic integrated circuits due to their versatility in function and their capability of integration. They have been utilized in various applications including filtering,1,2 switching,3 modulation,4 wavelength conversion,5 and sensing.6 Silicon microring resonators, leveraging off the mature silicon-on-insulator (SOI) platform, provide silicon waveguides with strong lateral light confinement due to the large refractive-index contrast between silicon and air.
They can be realized with diameters of less than 10 \(\mu \text{m} \), with negligible bending loss, which is essential for integration of micro- and nano-silicon photonics.

Fabrication of silicon microring resonators has been realized using various methods, principally by nanolithography followed by silicon etch technology, but the process details have been only sparsely reported, especially aspects related to sidewall roughness control, which is crucial to suppress scattering loss in the resonators. Normally, sidewall roughness is induced by a combination of transfer of mask-edge roughness and etched surface roughness, the latter of which is the result of chemical reaction and ion bombardment on the silicon sidewall during the etch process. In the work discussed here, we present in detail the fabrication of silicon microring resonators. Electron-beam lithography (EBL) and a lift-off process were applied to form three different mask materials, chromium (Cr), negative e-beam resist maN-2403, and hydrogen silsesquioxane (HSQ), onto SOI wafers. Mask-edge roughness and its effect on the sidewall roughness of the resonators were characterized and are discussed in the following. Subsequently, inductively coupled plasma (ICP) etch processes for silicon etching with various mask materials were developed and optimized with the aim to minimize etched surface roughness without further post-etch process. Last, results obtained utilizing various mask materials were compared in order to achieve reduced process complexity, enhanced process latitude, and small sidewall roughness. In particular, silicon microring resonators with less than 10-nm sidewall roughness are demonstrated.

2 Experiment

Silicon microring resonators were fabricated on SOI wafers consisting of a 320-nm-thick silicon top layer and a 1-\(\mu \text{m} \)-thick buffer oxide insulator layer. Etch mask patterns of the negative e-beam resists maN-2403 and HSQ were formed using a JEOL JBX-9300FS EBL system set to 100-KV accelerating voltage and 2-nA exposure beam current. Exposure doses were optimized to achieve minimum linewidth fluctuation, while the Cr mask patterns were achieved by a lift-off process consisting of EBL and a subsequent metal deposition process employing a CVC e-beam evaporator. Cr evaporation occurred at a pressure of less than \(\frac{1}{10} \times 10^{-6} \text{ Torr} \) to ensure a sufficiently long mean free path of the Cr molecules for directional deposition.

The etch process for patterning the silicon microring resonators was developed using a plasma-therm ICP tool. Both the ICP coil power and bias power, which separately control generation and direction of reactive ions, respectively, operate at radio frequency. \(\text{Cl}_2 \) and optional \(\text{C}_4\text{F}_8 \) were used as etch gases. \(\text{Cl}_2 \) is a common silicon etchant under plasma. \(\text{C}_4\text{F}_8 \) helps to protect the phenolic resin polymer–based e-beam resist maN-2403, although it corrupts e-beam resist HSQ, which is a silicon-oxide-based material.

Fig. 1 Results obtained for fabricating silicon microring resonators using different masking processes. (a) Cr mask etching; (b) maN-2403 mask etching; and (c) HSQ mask etching.
In the lift-off process to create the Cr mask patterns, positive e-beam resist ZEP-520A was used as the sacrificial layer. Cr in the spacing areas other than the ring and the waveguides was intended to be removed in the resist strip process. Completely removing all the Cr at the edge of the ring and around the waveguide patterns proved very difficult, however, due to molecular forces. This results in severe edge roughness of the Cr mask, as shown in Fig. 2, and subsequently, the roughness is transferred to the etched silicon during the ICP process, which produces sidewall roughness on the silicon waveguides. The roughness is normally ~40 nm, determined by the roughness of the Cr mask. Figure 3 illustrates the sidewall roughness of the silicon waveguides transferred from the mask-edge roughness. In contrast, the mask-edge roughness of the negative e-beam resist maN-2403 and HSQ is relatively small, normally several nanometers, and is determined by the resist properties. Thus, the sidewall roughness results mainly from the etched surface roughness. The process with the Cr mask is slightly more complicated compared with the processes developed for the maN-2403 and HSQ masks, since an additional lift-off step was applied to produce the Cr mask patterns. There is, however, considerable process latitude because of the extremely large etch selectivity of silicon to Cr under plasma.

On the other hand, processes based on the negative e-beam resists, maN-2403 and HSQ, are the simplest because they comprise only EBL and ICP etching. The etch selectivity of silicon to HSQ is much higher than that of silicon to maN-2403 under Cl₂ plasma. This is because HSQ is a silicon-oxide-based material, while maN-2403 is composed of phenolic resin as a polymeric binder. Normally, the etch selectivity of silicon to maN-2403 is less...
than 1:1 under chlorine plasma, and it needs around 400-nm-thick resist for etching 300-nm-thick silicon. Moreover, we observed that in some runs, the e-beam resist became delaminated by the Cl₂ plasma, as shown in Fig. 4. Due to the higher etch selectivity of Si to HSQ than that of Si to maN-2403, thinner e-beam resist can be applied when using HSQ as mask material to improve EBL resolution and reduce mask-edge roughness. The etch selectivity of silicon to HSQ is higher than 5:1, so in our experiment, the thickness of HSQ is 90 nm, and that of maN-2403 is 300 nm for 320-nm-thick silicon etching by optimized ICP processes.

Using our Cr and maN-2403 mask etch process, the etched surface roughness of the silicon microring resonators is relatively low, normally less than 10 nm. This is due in part to the formation of the CFₓ polymer on the silicon sidewall, which tends to reduce striation roughness associated with ion bombardment. The process with the HSQ masks permits considerable process latitude due to the high selectivity of silicon to HSQ. However, it is worthy of notice that only Cl₂ was used as the etching gas since CₓFₓ corrupts HSQ under plasma, and the striation roughness induced by ion bombardment on the silicon sidewalls should be taken into consideration. Using the normal process, the etched surface roughness was 20 to 30 nm. In our process, we optimized the etch recipe based on HSQ mask etching and achieved etched surface roughness of less than 10 nm, as shown in Fig. 5, where Fig. 5(b) is a top view of the edge of the silicon waveguide, indicating roughness less than 10 nm. The roughness was demonstrated by inspecting the ripple edge fluctuation on top of the waveguide structure in a vertical etched profile with high-resolution SEM. Using this method, it is essential to make sure that the sidewall angle of the waveguide is close to 90 deg, and that there is no etch undercut below the etch mask, as shown in Fig. 6, so that the sidewall roughness can be demonstrated by the edge fluctuation on top of the waveguide. Since the edge fluctuation in Fig. 5(b) is around 5 nm, sidewall roughness less than 10 nm was achieved. The advantage of the SEM inspection is that it can provide an approximate value of the roughness for the whole waveguide structure, which is essential for evaluating the optical scattering loss, but the limitation is that the definite value of the roughness cannot be detected by this method.

A comparison was carried out for the preceding three processes considering process complexity, process latitude, and sidewall roughness of the resonator. The results are shown in Table 1.

Last, by controlling the mask-edge roughness and the etched surface roughness, silicon microring resonators were fabricated with an average sidewall roughness of less than 10 nm, as shown in Fig. 7, which was demonstrated by inspecting the edge fluctuation of the waveguide structure in a vertical etched profile with high-resolution SEM. These high-quality results could be achieved with both maN-2403- and HSQ-based processes, where the process with maN-2403 features the advantage of CFₓ sidewall protection etching, while that with HSQ takes advantage of the higher EBL resolution with thinner e-beam resist.

4 Conclusion

The process details of the fabrication of silicon microring resonators based on EBL and ICP etching were presented. Silicon sidewall roughness of less than 10 nm was achieved by accurate control of the mask-edge roughness and the etched surface roughness. Processes employing three different mask materials were discussed, analyzed, and compared to achieve reduced process complexity, enhanced process latitude, and low sidewall roughness of the fabricated resonators.

Acknowledgments

This work is partially supported by the National Basic Research Program of China (2006CB708310) and the Natural Science Foundation of China (60578048). The work of DSC was supported in part by the CNRS.

<table>
<thead>
<tr>
<th>Table 1 Comparison of various fabrication processes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
</tr>
<tr>
<td>complexity</td>
</tr>
<tr>
<td>Cr mask</td>
</tr>
<tr>
<td>maN-2403 mask</td>
</tr>
<tr>
<td>HSQ mask</td>
</tr>
</tbody>
</table>

Fig. 6 Cross-section view of the fabricated silicon waveguide.
Fig. 7 Silicon microring resonator with smooth sidewalls.
References

1. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Jo-
neckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Pho-
2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Mi-
croring resonator channel dropping filters,” J. Lightwave Technol. 15,
3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-
optical control of light on a silicon chip,” Nature (London) 431,
4. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale
(2005).
5. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L.
G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-
6. Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring
resonator sensor based on intensity detection,” IEEE J. Quantum
7. J. Niehusmann, A. Vorkel, P. H. Bolivar, T. Wahlbrink, W. Henschel,
and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring
resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–
3347 (2004).

Yao Chen received his BS degree from Huzhong University of Science and Tech-
nology, China, in 2004, and he is now a PhD candidate in the Silicon Photonics and Mi-
cro systems Group at Wuhan National Laboratory for Optoelectronics. He has been
working with Prof. Zhou, Prof. Summers, and Prof. Yu on a joint project and focusing
on fabrication of silicon microring resonator and silicon-based photonic crystals. His re-
search interests include fabrication for optoelectronics, semiconductor manufacturing technology, and MEMS technology.

Jumbo Feng received his BS degree from Huzhong University of Science and Tech-
nology, China, in 2004, and he is now a PhD candidate in the Silicon Photonics and Mi-
cro systems Group at Wuhan National Laboratory for Optoelectronics. His research in-
terests include design and fabrication of photonic devices, semiconductor manufac-
turing technology, and MEMS technology.

Zhiping Zhou received his PhD (EE) de-
gree from Georgia Institute of Technology (GT) in Atlanta in 1993. He was a founder
and the vice president of production at Hengnan Transistor Factory in China (1971
to 1978) and a guest scientist of NIST (1987
to 1989). From 1993 to 2005, he was with
the Microelectronics Research Center at GT, where he engaged in research and de-
velopment in the areas of semiconductor photonic devices. He is now a Changjiang
professor at Peking University, China, and also an adjunct professor at the School of Electrical and Computer Engineering of GT. He is a senior member of IEEE, a member of SPIE, a member of OSA, and a life member of PSC.

Christopher J. Summers received his BS and PhD in physics from Reading University in the UK. He has held positions at Bell Labs, GTE Labs, and McDonnell Douglas Research Labs. In 1981, he joined the Georgia Tech Research Institute and in 1993 became director of the Phosphor Technology Center of Excellence. He is currently a professor at the Georgia Tech School of Materials Science and Engineering and an adjunct faculty member in the Schools of Physics and Electrical and Computer Engineering. He has a research history in electro-optical materials characterization, molecular beam epitaxy of infrared and electronic materials, and the synthesis of phosphor materials for displays and solid-state lighting. His current research interests are in propagation through 2-D photonic crystals, such as self-collimation phenomena, giant refraction and superprism effects, and the use of 3-D photonic crystals infiltrated by atomic layer deposition for studying luminescence modification and tunability. He has received numerous awards and honors, holds 10 patents, and has over 300 publications.

David S. Citrin was awarded a BA degree in physics, from Williams College, Massachusetts (1985), after which he earned MS (1987) and PhD (1991) degrees in physics from the University of Illinois at Urbana-Champaign, where he conducted theoretical research on the optical properties of quantum wires. Subsequently, Citrin was a postdoctoral research fellow at the Max Planck Institute for Solid State Research, Stuttgart, Germany (1992 to 1993), where he worked on exciton radiative decay in low-dimensional semiconductor structures. From 1993 to 1995, he was Center fellow at the Center for Ultrafast Optical Science at the University of Michigan, where his work addressed ultrafast phenomena in quantum wells and microcavities. He was an assistant professor of physics at Washington State University from 1995 to 2001, and received several professional awards. Citrin is presently a professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. Areas of special focus include terahertz science and technology, semiconductor devices, nanoscale science and engineering, plasmonics, nonlinear optics, and ultrafast phenomena.

Jun Yu received his BS degree from Hua-
zhong University of Science and Technol-
yogy (HUST) in 1970, after which he worked
as an assistant professor in HUST. Subse-
quently, he was a visiting research scholar
at Moscow University (1989 to 1990) and at
Northwestern University (1998 to 1999). He
became a professor at HUST in 1996 and is
currently the director of the Microelectronics
Research Institute and vice director of the
Beijing National Biochip Engineering Cen-
ter. His multidisciplinary interests overlap the areas of novel ferro-
electric materials and devices, MEMS, biochips and silicon thin-foil
solar cells. He is a senior member of the Chinese Institute of Elec-
tronics, a member of AAAS, and a member of MRS. He has earned
numerous awards, holds 5 patents, and has over 130 publications.